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Abstract
The concept of supersymmetry in a quantum-mechanical system is extended,
permitting the recognition of more supersymmetric systems, including very
familiar ones such as the free particle. Its spectrum is shown to be
supersymmetric upon taking into account physical reasonableness of the
wavefunctions involved. Spacetime symmetries are used for the construction
of the supercharges without explicit invocation of fermionic or Grassmann
variables. Most notably, while the free particle in one dimension has generally
been regarded as having a doubly degenerate continuum throughout, the
construction clarifies that there is a single zero-energy state at the base of
the spectrum.

PACS numbers: 11.30.Pb, 12.60.Jv, 32.10.−f, 03.65.Ca

Supersymmetry (SUSY) in field theories of elementary particles results in a fermion partner
to every boson, and vice versa. Both partners have the same mass (synonymously, energy).
The resulting pattern has one non-degenerate, zero-energy, bosonic state (the vacuum), while
every other state of the spectrum is degenerate in pairs (a boson and a fermion). This is
termed a SUSY spectrum [1]. There is as yet no experimental evidence of such SUSY
particles although certain instances of the spectra of neighbouring nuclei have been claimed
as examples of approximate SUSY in nature [2]. Witten [3] extended the SUSY concept to
‘zero-dimensional field theories’, that is, to ordinary quantum mechanics. The many examples
studied [4] have provided concrete physical systems and much interesting insight into SUSY.
In this paper, the concept is extended still further. Examples, including some very simple
and familiar systems and systems with purely continuous spectra, show the existence of many
more SUSY systems. Remarkably, it seems to have gone unrecognized that the free particle
itself has SUSY. The supersymmetry construction provides further insight into the nature of
this simplest of all physical systems. Instead of invoking fermionic spin variables from the
start, our construction uses spacetime symmetries such as parity and time reversal.
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Figure 1. A schematic SUSY spectrum. Note a non-degenerate ground state of zero energy and
an excited state spectrum of degenerate pairs with operators that transform one into the other.
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Figure 2. Spectrum of a free particle, showing two continua of even and odd parity. Dashed line
at the base of the latter indicates the absence of the zero-energy state.

Figure 1 gives a schematic of a SUSY spectrum. Among the distinguishing characteristics
are [4]: (1) a zero-energy non-degenerate ground state, (2) pairs of degenerate excited states,
(3) the existence of operators Q and Q† that carry degenerate pairs into one another as shown
while both operators yield zero upon acting on the ground state, (4) the operators satisfy

[H,Q] = [H,Q†] = 0 H = {Q,Q†}/2 (1)

(5) the operators have fermionic or ‘Grassmann’ character in that

{Q,Q} = {Q†,Q†} = 0 (2)

and (6) as seen in the above equations, the operators involved form a closed algebra with
mixed commutators and anti-commutators. SUSY quantum mechanics also identifies pairs of
potentials, V±, which separately support the two ladders of states in figure 1. These potentials
can be expressed in terms of the ground-state wavefunction and its first derivative [4].

Turning now to our extension, consider a free particle of mass m in one dimension,
easily the simplest non-relativistic quantum-mechanical system and one encountered in our
very first acquaintance with the subject. With the wave number k defined in the usual way
as E = (h̄k)2/2m, the spectrum of the Hamiltonian, H = 1

2p2 = − 1
2d2/dx2, is shown in

figure 2. (We will set h̄ = m = 1.) The purely continuous spectrum has two alternative
descriptions. In terms of standing waves, even and odd parity eigenstates are as shown. The
corresponding wavefunctions are cos kx and sin kx, respectively. Apart from an irrelevant
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numerical factor, these functions are ‘normalized per unit momentum’, that is, to a Dirac delta
function in wave number (see section 21 of [5]). There is a general view that the free particle
has a doubly-degenerate continuous spectrum but, remarkably, it seems to have escaped notice
that this is only true for all k > 0, the k = 0 occurring only in the even parity sector. The
odd parity state’s wavefunction vanishes in this limit. In figure 2, the bottom of the odd parity
continuum is shown dashed to denote the absence of the k = 0 value. Thus, a free particle has
a SUSY spectrum.

The zero-energy differential equation has two independent solutions, a constant and x.
But our claim is that only the former corresponds to a physical state, the other solution
not being finite at infinity [6]. All the other trigonometric functions for non-zero k and the
even parity function for k = 0 are finite everywhere, even if normalizable only to a delta
function. A supporting argument for a unique state at the base of the continuum is provided
by looking at the alternative description of the free particle in terms of travelling waves, or
momentum eigenstates. Wavefunctions exp(±ikx) denote waves travelling from left to right
and vice versa. Again, while such pairs exist for non-zero k, the k = 0 limit that describes
no propagation at all is but a single state. Indeed, although zero energy exists as a spectral
value, our argument based on wavefunctions is that there is only one of them at this value,
namely a constant, x not being a simultaneous eigenfunction of the momentum operator and the
Hamiltonian. So, in either of the two standard descriptions, the free particle spectrum should
be viewed as one of SUSY. This is different from discussions of so-called degenerate vacua
in SUSY [7]. The next paragraph views the free particle as a limiting case of ‘quantization
in a box’, together with its SUSY construction, providing strong supporting evidence for our
conclusion.

A particle of mass m in a one-dimensional box
(− 1

2L, 1
2L

)
has eigenvalues En =

n2(π2h̄2/2mL2), n = 1, 2, . . ., and its ground-state wavefunction is cos(πx/L). The higher
excited states are in sequence, sin(2πx/L), cos(3πx/L), . . ., and alternate in parity. Its SUSY
partner, as is well known (see, for instance, [8] and figure 3.2 in the book by Cooper et al
in [4]), has potential V− = 2(h̄2/2m)(π/L)2 sec2(πx/L) with the same eigenvalues except
that n = 1 is missing. The lowest state’s wavefunction is cos2(πx/L), has even parity, while
the next excited state of odd parity and energy E3 has wavefunction cos2(πx/L) sin(πx/L).
Note how this entirely discrete SUSY spectrum for any finite L evolves as L → ∞. Both
potentials go to zero, giving the free particle Hamiltonian, and the eigenvalues condense into
continuous spectra of even and odd parity pairs but there is always one extra state in V+. In
this limit, with the spectra of the two potentials superposed and an orthonormal set formed,
the free particle spectrum emerges with cosine and sine pairs in nπx/L → kx for all n � 2.
But the ground n = 1 → k = 0 state stands by itself.

Although the free particle’s SUSY nature has escaped notice, we note that SUSY has
been used extensively for scattering. Phase equivalent potentials, scattering amplitudes for
them and, in particular, the linking of a shallow and a deep potential through such equivalence,
have all been considered [9]. Often, a normalized wavefunction of the ground state is used for
constructing the partner potentials V±. But with our above use of continuum normalization
to a Dirac delta function, the spectrum of a free particle is undeniably supersymmetric as we
now proceed to show by completing the construction of the operators in equation (1).

With the operators of momentum p and parity P, we define

Q = pP/
√

2m Q† = Pp/
√

2m = −Q (3)

which clearly satisfy equation (1). They also satisfy criterion 3 in the list above, carrying
sines and cosines into one another to within multiplicative constants and giving zero when
operating on the constant ground-state wavefunction. Only criterion 5 is not satisfied (more
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on this below), no fermionic element having been introduced. The squares of the operators
do not vanish but yield the Hamiltonian to within a sign. (This sign and the anti-Hermitian
nature of Q can be removed by multiplying with an i in equation (3). This is a matter of taste.)
The operators again close under mixed commutators and anti-commutators, thus satisfying
criterion 6.

It is interesting that the two alternative descriptions of the free particle are generally
associated with the existence of two alternative operators, p and P, both of which commute
with H while not commuting with one another. Clearly, their product also commutes with
the Hamiltonian and this is precisely what equation (3) builds on in constructing SUSY. This
same procedure will be used below for the rotational counterpart and may afford further
generalization.

While the above construction in which criterion 5 is relaxed has some merit, pointing to
an extended view of SUSY constructions, even that criterion can be retained by defining an
alternative supercharge to the above Q. This is constructed by superposing the momentum
operator p with the operator pP :

q = (p + pP )/
√

4m q† = (p − pP )/
√

4m (4)

such that now q2 = 0 while equation (1) is still satisfied. Unlike Q, this supercharge q also has
the fermionic element of criterion 5 and satisfies equation (2). Its actions on the wavefunctions
are given by

q cos kx = i(h̄k/
√

m) sin kx q sin kx = 0
(5)

q† sin kx = −i(h̄k/
√

m) cos kx q† cos kx = 0.

Note that both q and q† give zero when acting on the ground state. Although the two
constructions through Q or q are equivalent, we find some merit in the former as simpler and
more straightforward, with just one operator pP rather than two, p and pP . But, such an
equivalence in general of N = 1 and N = 2 SUSY has been noted1 [10].

The idea of using as a ‘grading’ operator an operator such as parity whose square is unity,
in contrast to a Grassmann variable or fermionic object whose square vanishes, has occurred
before2. In particular, Plyushchay and co-workers have used reflection operators in a series
of papers [11] for bosonized SUSY and parabosonic systems. However, in many cases, the
reflection operators have occurred in conjunction with Pauli spinors and the ‘minimal’ example
in the second of these papers uses a superpotential which is an odd function under parity. Our
construction in this paper, using only parity, and with the superpotential and V± all equal to
zero as pertaining to a free particle, is perhaps the simplest illustration of grading.

Consider next a zero-range, delta function well in one dimension, with H = p2/2−λδ(x).
As is well known, such an attractive delta-well has one and only one bound state with energy
E = −λ2/2 and normalized wavefunction

√
λ exp(−λ|x|), and these are often used as a model

for loosely bound systems such as the deuteron in nuclear physics or a negative ion in atomic
physics. The entire spectrum is as shown in figure 3, the odd-parity continuum remaining
unchanged (from the free particle’s) as sin kx since these states never ‘see’ the zero-range
potential whereas the even parity states are now given by [12]

k cos kx − λ sin k|x|√
k2 + λ2

. (6)

The change from cos kx is necessary to satisfy the Schrödinger equation with the delta-well
and to be orthogonal to the ground-state wavefunction. In the limit λ → 0, equation (6)

1 I thank Dr F Gieres for a very informative discussion on this topic.
2 The equivalence of these two points of view is not surprising. It reflects the alternatives of using the Cartesian
Pauli spinors with squares equal to unity or the step-up/down combinations σ± whose squares vanish.
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Figure 3. Spectrum of a one-dimensional delta function potential well. Contrast with figure 2.
While the odd parity states are unchanged, there is now a bound state of even parity and the lowest
state k = 0 of the continuum is absent.
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Figure 4. Spectrum of a free rotor, displaying supersymmetry, with the operator product of angular
momentum and time-reversal serving as a supercharge.

reduces, of course, to the free particle cos kx. But now, as emphasized by the dashed lines
at the bottom of both continua in figure 3, the limit k → 0 makes equation (6) vanish. The
k = 0 state is now absent also in the even parity sector. Once again, there is a SUSY spectrum,
with one even parity ground state that is bound and all excited states being continuum states
in pairs. The zero of the energy scale can be reset at the bound state energy. Comparison with
the previous example shows also how one state from the even parity continuum is ‘peeled’ off
to become the bound state upon ‘turning on’ λ. This provides yet another perspective on the
free particle and delta-well spectra, both of which exhibit SUSY.

A related problem that has been discussed earlier [13] (see also figure 8 of [14]) is the
one-dimensional ‘cut-off’ Coulomb potential that applies to a hydrogen atom in an ultrastrong
magnetic field of the sort found on pulsars. There is a SUSY spectrum with one deeply bound
ground state, all others being even and odd parity pairs at the usual Bohr energies.

The rotational counterpart of the free particle in translation is, of course, the free rotor
in a plane, with Hamiltonian L2

z

/
2I , where I is the moment of inertia about the z-axis of
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rotation. Its spectrum is also one of SUSY as shown in figure 4, pairs of non-zero m states
being degenerate, with only the lowest m = 0 state non-degenerate. The wavefunctions, to
within a numerical factor, are exp(imφ). Again, although a familiar example, the simple
SUSY construction below has not received attention. (The SUSY of the rotor has been noted
in different contexts [11], including in re-casting the one-dimensional hydrogen atom as a
rotor [15].) We can construct the operators

Q = LzT /
√

2I Q† = T Lz/
√

2I = −Q (7)

where T is the time-reversal operator. Again, equation (1) is satisfied as well as all but the
criterion 5 of SUSY. There is a pleasing symmetry between the two problems of the free
particle and free rotor. Besides the obvious roles of linear momentum and angular momentum
in the two, note the roles of parity and time reversal in Q. Also note again our use of the product
of two operators that both commute with the Hamiltonian in constructing Q. The alternative
of an operator q, chosen as a linear combination of Lz and LzT such that criterion 5 is also
satisfied, is immediate.

This extended view of supersymmetry, and the employment of spacetime symmetries in its
construction, may find more applications and provide more insight into quantum-mechanical
problems.
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